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ABSTRACT
Flooding is among the most serious and dangerous of all 
global risks, causing loss of life and damage to property, 
livelihoods, and economies. Flooding is also likely to 
intensify in the coming decades due to climate change. 
Additionally, economic growth and urbanization are 
putting more and more assets and people into flood-prone 
areas. Despite these dangers, flood risks are often under-
estimated and poorly managed due to the lack of data and 
actionable information, particularly in less-developed 
regions.

Aqueduct Floods is an online platform that measures 
riverine and coastal flood risks under both current base-
line conditions and future projections in 2030, 2050, and 
2080. In addition to providing hazard maps and assess-
ing risks, Aqueduct Floods enables its users to conduct 
comprehensive cost-benefit analysis to evaluate the value 
of dike flood protection strategies. 

Aqueduct Floods aims to empower disaster risk analysts 
and managers with quantitative information on flood 
risks and adaptation strategy costs, and to help inform 
policy and investment decision-making. This technical 
note explains in detail the framework, methodology, and 
data used in developing Aqueduct Floods to help users 
better interpret the risk information presented on the tool 
and understand the full strength and limitations of our 
data and methodology.
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1. BACKGROUND
Floods are widely recognized as one of the most costly 
natural hazards. The impacts of floods are projected to 
increase in many parts of the world (UNISDR 2015) due to 
climate change (Hallegatte et al. 2013; Hinkel et al. 2014; 
Vitousek et al. 2017; Ward et al. 2017; Winsemius et al. 
2016; Woodruff et al. 2013), socioeconomic development 
in flood-prone areas (Jongman et al. 2012), and land sub-
sidence (Syvitski et al. 2009; Brown and Nicholls 2015). 
Reducing the impacts of floods will require effective flood 
risk management, which, in turn, requires knowledge 
and understanding of current risk, future risk, and how 
that risk can be reduced through adaptation and risk 
management. 

To answer this need, a consortium consisting of the World 
Resources Institute (WRI), Deltares, Vrije Universiteit 
Amsterdam’s Institute for Environmental Studies (IVM), 
Utrecht University (UU), and the Netherlands Environ-
mental Assessment Agency (PBL), with funding support 
from the Netherlands Ministry of Infrastructure and 
Water Management and the World Bank, have developed 
Aqueduct Floods, a global tool providing actionable infor-
mation to analyze flood risks and understand the costs 
and benefits of interventions, such as dikes, to reduce 
flood risk. 

Version 1 of the Aqueduct Global Flood Analyzer (online 
since 2014) allowed for analyses of river flood risk now 
and in the future, under the influence of climate change 
and socioeconomic change. The following components, 
identified as important by several stakeholders and miss-
ing from version 1, have been added to the new Aqueduct 
Floods: 

 ▪ Coastal flood risk assessment, including future im-
pacts of sea level rise, subsidence, and socioeconomic 
growth

 ▪ The ability to assess the costs and benefits of adapting 
to current and future flood risk

 ▪ Understanding of present-day flood protection  
standards

 ▪ Visualization of scenario and global climate model 
(GCM) uncertainty

This technical note explains in detail the framework, 
methodology, and data used in developing Aqueduct 
Floods. Section 2 gives an overview of the modeling 
framework and scenarios. Sections 3, 4, and 5 describe 
how hazard, exposure, and vulnerability were modeled 
individually. Section 6 explains how risk data were com-
puted, and Section 7 describes how cost-benefit analyses 
are conducted. Section 8 discusses limitations.

2. OVERVIEW OF FRAMEWORK  
AND SCENARIOS
Flood Risk Model and Tool Framework
We simulated flood risk using a cascade of models within 
the Global Flood Risk with IMAGE Scenarios (GLOFRIS) 
modeling framework (Winsemius et al. 2013), and used 
GLOFRIS to assess the influence on river flood risk of 
natural climate variability (Ward et al. 2014) and future 
climate and socioeconomic change (Winsemius et al. 
2016), as well as the costs and benefits of reducing river 
flood risk through dikes (Ward et al. 2017).

For Aqueduct Floods, several new aspects have been 
added to the GLOFRIS framework, and several major 
improvements have been made, including the abil-
ity to simulate coastal flood risk, projections of future 
subsidence, new projections of future population and 
gross domestic product (GDP), better representation of 
maximum potential damages and vulnerability, and an 
improved method for downscaling future climate impacts. 
In this section, we provide an overview of the GLOFRIS 
framework used in this tool.

Exposure and Vulnerability to Hazard: 
Affected Population, GDP, and Urban Damage
For this tool, risk is represented using three indicators: 
affected population, affected GDP, and urban damage. 
In brief, GLOFRIS simulates flood risk by combining 
information on hazard, exposure, and vulnerability. The 
data and methods used to represent hazard, exposure, 
and vulnerability, briefly described in this paragraph, are 
expanded upon in Sections 3, 4, and 5, respectively. The 
hazard is represented by inundation maps showing the 
flood extent and depth for floods of several return peri-
ods (2, 5, 10, 25, 50, 100, 250, 500, and 1,000 years) at a 
resolution of 5 × 5 arc minutes (5′ × 5′). This equates to 
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roughly 10 kilometer (km) × 10 km pixels at the equator. 
The hazard maps were regridded to 30 × 30 arc seconds 
(30″ × 30″)—about 1 km × 1 km at the equator. 

Exposure is represented by different datasets, depend-
ing on the risk indicator. For affected population and 
affected GDP, exposure is represented by gridded maps of 
population count and GDP per cell, respectively; both of 
these datasets have a horizontal resolution of 30″ × 30″. 
For urban damage, exposure is represented using a land 
use map showing which cells are urban and which are 
nonurban (30″ × 30″). Urban cells, or built-up cells, are 
comprised of at least 50 percent human-made structures 
and are assigned a value of maximum economic damage 
per square kilometer (km2) for each country. This rep-
resents the maximum damage (in US$ PPP [purchasing 
power parity] 20051 values per km2) that could occur due 
to flooding in urban areas per km2 per country.

Vulnerability is represented through depth-damage 
functions, which show the percentage of the maximum 
damage that would actually occur for different inundation 
depths; these depth-damage functions are only applied for 
the urban damage risk indicator.

Impacts per return period hazard level are computed as 
follows per grid cell: for urban damage, the percentage of 
damage relative to maximum damage is computed from 
the occurring water depth in that grid cell, and from the 
depth-damage relationship. For the other impact indica-
tors, the amount of GDP or population in the grid cell is 
counted as impacted when water levels exceed 0 m. Each 
risk indicator is calculated for the return periods 2, 5, 
10, 25, 50, 100, 250, 500, and 1,000 years, and expected 
annual impacts are then calculated as the area under the 
exceedance probability-impact curve (risk curve) (see, e.g., 
Meyer et al. 2009).

Climate Change Scenarios
In Aqueduct Floods, flood risk is calculated for 2010, 2030, 
2050, and 2080. Future changes in climate and socioeco-
nomic conditions are represented using three scenarios. 
Each scenario uses a combination of a representative 
concentration pathway (RCP) (van Vuuren et al. 2011) and 
a shared socioeconomic pathway (SSP) (van Vuuren et al. 
2014) to represent future climate and changes in future 
socioeconomic conditions, respectively. The scenarios used 
are RCP4.5/SSP2, and RCP8.5/SSP2, and RCP8.5/SSP3.

Assessing Benefits of Flood Protection Dikes
Using Aqueduct Floods, it is also possible to assess the 
costs and benefits of reducing flood risk (in terms of urban 
expected annual damage [EAD]) by increasing the flood 
protection offered by dikes. This is achieved following the 
method developed in Ward et al. (2017), and described 
in Section 7. In brief, the benefits of increasing protec-
tion through dikes are defined as the difference between 
future EAD if dikes remain constant at assumed current 
height and future EAD if the height of dikes is increased. 
Costs are defined as the sum of investment and capital-
ized maintenance costs.

3. HAZARD MODELING
Aqueduct Floods now includes two hazard components, 
riverine and coastal floods. Both hazards are represented 
by global scale layers of inundation depth at 30″ × 30″ 
resolution, with different layers representing inundation 
depths for different annual average probabilities of occur-
rence. The hazard layers have been simulated without 
considering the presence of flood protection. Note that 
this does not mean that flood protection is not included in 
our risk computation. Instead of including it in the com-
putations of riverine and coastal flood hazard, we include 
the effects of flood protection in the risk calculations by 
assuming zero damage below the assumed standard of 
protection (see Section 6).

River Hazard
To calculate the river hazard layers for the individual 
return periods, we used the GLOFRIS model (Ward et al. 
2013; Winsemius et al. 2013). GLOFRIS applies a global 
hydrological model, PCRaster Global Water Balance 
(PCR-GLOBWB) (Sutanudjaja et al. 2018), with a river and 
floodplain routing scheme to make long-term simulations 
of discharges and flood levels for several climate condi-
tions. The meteorological datasets of the European Union 
Water and Global Change (EUWATCH) program (Weedon 
et al. 2011) and the Inter-sectoral Impact Model Inter-
comparison Project (ISI-MIP) (Hempel et al. 2013) were 
used to force PCR-GLOBWB over various time periods, 
between 1950 and 2099. Based on PCR-GLOBWB output, 
we then applied extreme value statistics to derive the 
floodplain water volumes per grid cell for several flooding 
return periods (2, 5, 10, 25, 50, 100, 250, 500, and 1,000 
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years) for the current time (based on 1960–99 simulation) 
and future climate (2010–49, 2030–69, and 2060–99). 
These are then used as input to a volume spreading flood 
model (Winsemius et al. 2013) to convert the 5′ × 5′ flood 
volumes into maps of high-resolution inundation depth at 
a resolution of 30″ × 30″. We provide additional docu-
mentation on PCR-GLOBWB (version 2) and GLOFRIS 
model details, input data, and bias correction processes in 
Appendix A.1.1. 

Flood Inundation Downscaling
We adapted the inundation downscaling algorithm 
described by Winsemius et al. (2013). The original 
downscaling approach performed downscaling per grid 
cell. Within our new downscaling approach, we follow 
the same principle but instead use a contributing basin 
approach, in which we downscale inundation volumes per 
river stretch. More details on our downscaling method 
and validation efforts can be found in Appendix A.1.2.

Coastal Hazard
To estimate coastal hazard, we used the Global Tide and 
Surge Reanalysis (GTSR) dataset (Muis et al. 2016) as a 
database of extreme water levels. GTSR is a global data-
set of daily sea levels (due to tide and storm surge) for 
1979–2014, based on the hydrodynamic Global Tide and 
Surge Model (GTSM). Surge is simulated using wind and 
pressure fields from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Re-analysis-Interim 
(ERA-Interim) dataset (Dee et al. 2011). Tide is simulated 
using a separate model, the Finite Element Solution 2012 
(FES 2012) model (Carrère and Lyard 2003).

To establish extreme values for the required return 
periods, we fitted and applied a Gumbel distribution at 
all locations. Consequently, extreme tide and surge levels 
were established for 2, 5, 10, 25, 50, 100, 250, 500, and 
1,000-year return periods. To translate near-shore tide 
and surge levels to overland inundation, we applied a 
geographic information system (GIS)-based inundation 
routine, similar to Vafeidis et al. (2018). We used gridded 
sea level changes from the Responses to Coastal Climate 
Change: Innovative Strategies for High-End Scenarios—
Adaptation and Mitigation (RISES-AM) project (Jevrejeva 
et al. 2014) to simulate future extreme sea levels, and 
used subsidence estimates (see section below) to estimate 

how the terrain may change as a result of subsidence. See 
Appendix A.1.3 for more information on model enrich-
ment and adjustments for coastal hazard modeling.

Subsidence Modeling
Land subsidence—the lowering of the land level—is an 
important variable used for calculating future flood 
risk. In many coastal areas, groundwater extraction is 
the dominant cause of human-induced land subsidence 
(Erkens et al. 2015; Galloway et al. 2016). Land subsid-
ence was modeled on a global scale using three existing 
models—namely, the hydrological model PCR-GLOBWB 
integrated with the global Modular Finite-Difference Flow 
(MODFLOW) groundwater model (see de Graaf et al. 
2017; and Sutanudjaja et al. 2018), and a land subsidence 
model (Erkens and Sutanudjaja 2015). More details on the 
subsidence modeling database and methodology can be 
found in Appendix A.1.4. 

4. EXPOSURE
Baseline Exposure (2010)
In GLOFRIS, exposure is represented by different data-
sets, depending on the risk indicator being used. For 
urban damage, exposure is represented using a map 
showing the percentage of built-up areas per grid cell (30″ 
× 30″). Data for current built-up area per grid cell are 
taken from the History Database of the Global Environ-
ment (HYDE) (Klein Goldewijk et al. 2010). These data 
have a resolution of 5′ × 5′ and were therefore regridded 
to the 30″ × 30″ resolution. In the HYDE dataset, and 
therefore in this tool, this refers to all types of built-up 
areas and artificial surfaces such as pavement. For each of 
these cells, an estimate is made of the area that is residen-
tial, industrial, and commercial. A value of maximum eco-
nomic damage per m2 is estimated for residential, indus-
trial, and commercial per country. For more information 
on the methods used to determine maximum economic 
damage for built-up areas, see Appendix A.2.2.

For affected population and affected GDP, exposure is rep-
resented by gridded maps of population count and GDP 
per cell, respectively; both have a horizontal resolution of 
30″ × 30″. More details regarding the baseline maps for 
population and GDP can be found in Appendix A.2.1. 
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Future Exposure (2030, 2050, 2080)
Future built-up area percentages, which represent urban 
areas covered by at least 50 percent human-made struc-
tures, were taken from Winsemius et al. (2016). Data were 
computed using changes in gridded population and urban 
population from the Gladders Image-Slicing Multi-slit 
Option–Integrated Model to Assess the Global Environ-
ment (GISMO/IMAGE) (Bouwman et al. 2006), using the 
method described in Jongman et al. (2012).

The population and GDP maps are developed for future 
time periods (2030, 2050, 2080) using the shared socio-
economic pathways (SSPs). The SSPs have been developed 
by the research community to facilitate integrated assess-
ments of climate impacts (van Vuuren et al. 2014). They 
provide possible pathways of society and related societal 
systems for the 21st century. Aqueduct Floods uses two of 
the five possible SSPs: SSP2 for optimistic and business-
as-usual scenarios; and SSP3 for the pessimistic scenario. 
The data have been downscaled using the 2UP model. 
More details on future population and GDP exposure can 
be found in Appendix A.2.3.

5. VULNERABILITY
The damage estimation of the previous version of Aque-
duct Floods (the Aqueduct Global Flood Analyzer) was 
conducted via a relatively limited vulnerability assessment 
that used a single stage-damage function for all urban 
areas. For the new version of Aqueduct Floods, vulner-
ability was assessed in more detail. Instead of looking at 
the overall urban damage, we estimated the flood dam-
age to buildings over three occupancy types: residential, 
commercial, and industrial. For each of these occupancy 
types, total damage was calculated as the sum of struc-
tural and content damage. These were calculated using 
vulnerability curves per occupancy type.

These global flood depth-damage functions were taken 
from the database developed by Huizinga et al. (2017). 
They consist of normalized global damage curves up to six 
meters (m) (i.e., two stories), and maximum damage for 
structure and content per country. The maximum damage 
per country is based on GDP per capita and construction 
cost surveys (Huizinga et al. 2017; Appendix A.2.2).

The vulnerability of the population and GDP to floods was 
assessed as a binary condition: they are either affected or 
they are not. In any cell with inundation depths greater 
than 0, the population and GDP within that cell were 
considered 100 percent vulnerable (i.e., they are either 
affected or not, in a binary sense). We did not distinguish 
between different levels of vulnerability (forced migration, 
fatalities, etc.). 

6. COMPUTATION OF RISK
Flood Protection
Flood protection measures, such as dikes, can reduce the 
impact of the flood hazard and therefore are important 
to consider when calculating flood risk.  In Aqueduct 
Floods, default flood protection values are provided per 
administrative level 1 (e.g., states in the United States).2 
These values are based on the Flood Protection Standards 
(FLOPROS) model methodology (Scussolini et al. 2016). 
FLOPROS is a database of current protection standards 
for both riverine and coastal floods, developed specifically 
for Aqueduct Floods.3 These modeled protection standards 
have been validated against actual flood protection stan-
dards in place in several regions (Scussolini et al. 2016). 
Since flood inundation is not simulated hydrodynamically, 
the framework does not account for the transfer of risk 
from better-protected upstream areas to downstream 
areas. See Appendix A.3 to read more about the validation 
process. 

Existing flood protection levels must be updated for future 
years to reflect changing climatic conditions. For example, 
if flooding is projected to intensify, a 50-year flood protec-
tion level in 2010 may only protect against 25-year floods 
in 2050. To transform flood protection in future years, 
we used future loss-probability curves generated under a 
climate-change-only scenario (see below) and the baseline 
curves to find the future protection level. For example, 
if the current protection level for location A is 100 years, 
we calculate present-day losses associated with a single 
100-year flood event using the baseline and find the prob-
ability of the same level of losses in the future using the 
climate-change-only future loss-probability curve.



6  |  

Expected Annual Damage
Each impact indicator is calculated for the return periods 
of 2, 5, 10, 25, 50, 100, 250, 500, and 1,000 years for 
floods using the hazard (riverine and coastal), exposure 
(population, GDP, and urban assets), and vulnerability 
data. Impacts are translated into the expected annual 
damage (EAD)—or risk—using the exceedance probabil-
ity-impact curve (Figure 1; see, e.g., Meyer et al. 2009). 
The curve is created by plotting the flood probabilities 

(i.e., 1/return periods) on the x axis and the impacts on 
the y axis.  The area under the curve represents EAD; 
however, flood protection must be incorporated into the 
calculation before the integral of the area under the curve 
is taken. The flood protection is added to the risk curve as 
a vertical line.4 All impacts to the right of the flood protec-
tion line (i.e., damage from smaller floods) are assumed 
to be protected against and are set to 0. EAD is calculated 
by integrating the area of the curve to the left of the flood 
protection line.

Figure 1  | Risk Curve Used to Calculate Expected Annual Damage

Source: WRI.
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For riverine risk, EAD is calculated using five global circu-
lation models. For coastal risk, EAD is calculated using 
the 5th, 50th, and 95th percentiles of spatially distributed 
sea level rise projections (Jevrejeva et al. 2014). The 
average, minimum, and maximum EAD are reported on 
Aqueduct Floods.  

Drivers of Flood Impact in Future Years
Data on future impacts (flood risks) are split into four 
categories: total impact, impact from climate change only, 
impact from socioeconomic change (e.g., population and 
GDP growth, urban expansion) only, and (if coastal haz-
ard) impact from subsidence change only. The last three 
items in this list—climate, socioeconomic conditions, and 
land subsidence—drive the change in future flood risks. 
However, only the total impact data account for com-
pounding interactions among climate, socioeconomic, and 
subsidence factors. Therefore, impact from climate change 
only, socioeconomic only, and subsidence only must be 
scaled to match the change in total impact. 

To do this, first the change from the total impact in future 
years to baseline impact is calculated:

where:

I = impact

C = change in impact from baseline

tot = total impact 

Next, the change in impact from each of the drivers 
individually, compared to baseline impact, is calculated. 
Below we provide an example for change in impact, driven 
by climate change:

where:

I = impact

C = change in impact from baseline

tot = total impact

cc = climate change only

Finally, the drivers are turned into a ratio relative to one 
another and applied to the change in total impact:

where:

D = driver

C = change in impact from baseline

tot = total impact

cc = climate change only

soc = socioeconomic only

sub = subsidence only

This process is repeated for estimated impact driven only 
by socioeconomic and subsidence changes, for the years 
2030, 2050, and 2080 (nine ratios calculated in total). As 
with EAD, driver contributions are calculated for each 
global circulation model or sea level rise scenario and 
averaged at the end. Minimum and maximum climate 
contribution are also found and reported in Aqueduct 
Floods. 

7. COSTS AND BENEFITS OF ADAPTATION
Using Aqueduct Floods, it is also possible to assess the 
costs and benefits of reducing flood risk by increasing 
the flood protection offered by dikes. This is just one 
form of adaptation to flooding and does not take into 
account other approaches, such as floodplain restoration 
and coastal mangroves, that also reduce flood hazard. 
The cost-benefit ratio is achieved following the method 
developed in Ward et al. (2017), from which the descrip-
tion below is taken or adapted. The methodology to derive 
coastal dike height and lengths is taken from van Wesen-
beeck et al. (n.d.). 

Analysis Time Frame
The cost-benefit analysis is carried out based on time 
periods defined by the user. First, the user defines the 
construction years5 for the dike infrastructure. It is 
assumed that flood protection increases linearly during 
construction. Users must then choose the project start 
year and select the lifespan6 of the infrastructure. Costs 
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and benefits will be calculated within this time frame: the 
analysis starts with the first year of construction and lasts 
until the lifespan is completed. As a default, the analysis 
starts in 2020, with the assumption that construction is 
complete by 2040. The analysis ends in 2100, 81 years 
after it began. 

Estimation of Benefits
Within Aqueduct Floods, the user can define the current 
level of protection,7 and the design protection level8 (flood 
return period) against which dikes should protect in the 
future. The user must define in which year (2030, 2050, 
or 2080)9 the design protection level should be valid. The 
benefits are then calculated as the difference between 
future EAD with the design protection and the EAD 
without additional protection. EAD without additional 
flood protection effectively means that existing dikes are 
maintained at their current height. 

In order to get an annualized time series for the results, 
the EAD is first calculated for 2010, 2030, 2050, and 
2080, as described above. EAD is then interpolated10 for 
all years in the analysis time frame. Once this process 
is repeated for both the EAD with design protection and 
the EAD without additional protection, the benefits can 
be calculated. Benefits can begin accumulating as soon 
as construction starts, when construction is complete, or 
somewhere in between.11 Any benefits achieved during 
construction are prorated based on the progress of the 
construction.

The benefits analysis is performed for each global circula-
tion model and averaged at the end.

Estimation of Costs
Costs are calculated by summing annual investment and 
capitalized maintenance costs. Since EAD (and therefore 
benefits) is calculated in Aqueduct in US$ 2005 purchas-
ing power parity (PPP), the estimates of unit investment 
costs per km of dike and m of dike heightening must also 
be in US$ 2005 PPP. The user can either enter a user-
defined unit investment cost or use the default values 
(available per country).12 See Appendix A.4.1 for more 
details on the default unit investment costs and Appendix 
A.4.2 for more details on estimating the dike infrastruc-
ture dimensions (km length per m height).

The total investment cost of the infrastructure (i.e., unit 
cost × dimensions) is annualized by first dividing it into 
equal intervals—where the number of intervals equals 
the number of construction years—and then turning the 
intervals into a cumulative sum. Once the annualized 
investment cost is calculated, the maintenance rate13 is 
applied and added to the investment cost. The total main-
tenance expense in the last year of construction is used as 
the annual maintenance cost for all remaining years of the 
infrastructure. 

The discount rate,14 which can be customized, is applied at 
the end of the calculation. If not specified, the default rate 
is 5 percent. The discount rate is applied using the follow-
ing equation:

where:

year sequence = the number of years since construction 
began
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8. LIMITATIONS
Uncertainties in future projections of both climate change 
and socioeconomic development need to be taken into 
account when interpreting analysis results generated by 
Aqueduct Floods. We provide a wide range of plausible 
scenarios and estimates using different climate models, 
aiming to give users, to some degree, the ability to evalu-
ate and include uncertainties in their analyses.

Trade-offs between data availability and accuracy are one 
of the inherent limitations of global models. Efforts have 
been made to collect and develop new global datasets (e.g., 
existing flood protection, vegetation-corrected digital 
elevation model) for evaluating flood risks worldwide. 
However, assumptions are made when required data are 
not available at the global scale. It is also worth highlight-
ing that simplification schemes (e.g., state-to-country 
aggregation, protection-level elevation) are adopted in the 
tool’s on-the-fly-calculations to enhance computational 
performance.

Currently, only dikes are included as the intervention 
method in our flood protection cost-benefit analyzer. 
However, we understand that dikes might not be the (or 
the only) way to mitigate flood risks in many places. Other 
flood protection schemes, such as dams, mangroves, 
and early warning systems, should all be considered and 
evaluated when information is available and the situation 
applicable. We plan to further develop Aqueduct Floods to 
include more protection options, particularly green infra-
structure, in future iterations of the cost-benefit analyzer.

While our tool measures both riverine and coastal flood 
risks, these hazards are evaluated separately, as the 
interaction, or the compound risks, between river and 
storm surges are not modeled in our analysis. On the one 
hand, simply adding damage estimates for riverine and 
coastal together could result in double-counting; on the 
other, some areas may suffer increased hazard due to 
compound effects. The tool also assumes that flood events 
are entirely independent of each other. This means that 
in the event a certain area experiences two floods very 
close in time, residual flooding impacts in the area not yet 
recovered from the first flood are not accounted for in our 
damage assessment.

The impact of floods on the economy and people’s liveli-
hoods could be a result of direct damages (e.g., flooded 
properties or infrastructure) as well as indirect ones 
(e.g., disrupted transportation or broken power lines). 
Indirect damages are not yet incorporated into our risk 
model. While our tool provides global coverage and 
comparability on flood risk data, when diving deep into 
specific locations, additional aspects of risks need to be 
considered and modeled to achieve a more comprehensive 
assessment. 
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APPENDIX

A. 1 Hazard Modeling
A.1.1 River hazard
The hydrological model, PCRaster Global Water Balance, version 2 (PCR-GLOBWB 
2), simulates per time step the water volume that resides in the floodplains of 
rivers at a resolution of 5′ × 5′ (ca. 10 km × 10 km at the equator). Simulations are 
carried for (a) current climate conditions, using a reanalysis forcing dataset, and 
(b) future climate conditions, using data from several different global climate 
models (GCMs) forced with several representative concentration pathways 
(RCPs).

The input data used to carry out the hazard simulations for the current and fu-
ture periods in this tool are described in detail in Winsemius et al. (2016). In brief, 
for current conditions, we used the European Union Water and Global Change 
(EUWATCH) forcing data (Weedon et al. 2011) over the period 1960–99, while 
for future conditions we used the Inter-sectoral Impact Model Intercomparison 
Project (ISI-MIP) forcing data (Hempel et al. 2013) for the periods 2030 (by run-
ning over the period 2010–49) and 2050 (by running over the period 2030–69), 
as well as 2080 (2060–99). Note that the exposure data for current conditions 
represent the situation in 2010 (not 1960–99). The main differences between the 
method described in Winsemius et al. (2016) and the method applied to develop 
the hazard layers used in Aqueduct Floods are (a) we have run the hydrological 
simulations with a newer version of PCR-GLOBWB, with a higher spatial resolu-
tion—that is, PCR-GLOBWB 2 at the spatial resolution of 5′ × 5′ (see Sutanudjaja 
et al. 2018 for new features and details); (b) we have applied an improved bias 
correction scheme; and (c) we have used a slightly modified downscaling 
scheme. Below, we briefly describe these modifications. 

Winsemius et al. (2016) argue in their supplementary materials that a bias cor-
rection on the climate scenarios is required because the input climate datasets 
are only bias-corrected based on daily statistics. They thus may still contain 
bias in the autocorrelation of rainfall in time, at both short and long (yearly) time 
scales, as demonstrated by Johnson et al. (2011). Therefore, an additional bias 

correction was required. In Winsemius et al. (2016), this bias correction was ap-
plied by using a model-model difference in flood risk rather than by applying a 
bias correction within the hazard simulations themselves before performing the 
hazard map downscaling procedure. For Aqueduct Floods, we performed an ad-
ditive correction method within the space of the extreme value distributions of 
the flood volumes. The extreme volumes obtained from the run forced with the 
observation-based EUWATCH dataset (1960–99) were assumed as the present-
day values, and their changes in future flood volumes were calculated, for all 
GCMs, from differences between the values in future (RCP and GCM combina-
tion) and historical (GCM) conditions. The procedure to obtain corrected future 
volumes, “future corrected,” is summarized in the following equation:

with the present_watch representing present-day values based on the 
EUWATCH run, and present_gcm and future_gcm indicating values obtained 
from GCM runs in historical (under present-day greenhouse gas concentration 
forcing) and future (for various RCP scenarios) simulation periods.    

The procedure is also illustrated for a given grid cell in Figure A1. For a future 
flood volume with bias for a given probability (indicated in  Figure A1 using re-
turn periods)—estimated from a run with future conditions (RCP and GCM com-
bination)—we calculated its change to the present-day value using the same 
GCM run under present-day greenhouse gas concentration forcing. We then 
imposed the difference to the present-day run forced with the EUWATCH dataset. 
For instance, let us assume that a run for RCP 4.5 using the Hadley Centre Global 
Environmental Model version 2—Earth System (HadGEM2-ES), a GCM, in 2050 
produces a flood volume for the 10-year flood of 5 million cubic meters (m3) for a 
given grid cell. Its flood volume in the GCM simulation under present-day climate 
is, for example, 2 million m3. We then look up the flood volume of a 10-year event 
in the present-day in the EUWATCH run; for example, 4 million m3. This means 
that the bias corrected flood volume for RCP 4.5 using HadGEM2-ES in 2050 is 4 
million + (5 million – 2 million) = 7 million m3. Note that in regions with simulated 
reduced extreme rainfall, the flood hazard may also go down, resulting in a 
negative bias correction. We always use a lower limit of 0 m3.

Figure A1  | Illustration of Bias Correction Procedure

Source: Authors.
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A.1.2 Flood inundation downscaling
We performed the following steps to downscale a given flood volume map to 30″ 
× 30″ resolution:

We used the 30″ × 30″ Hydrological Data and Maps Based on Shuttle Eleva-
tion Derivatives at Multiple Scales (HydroSHEDS) (Lehner et al. 2008) as our 
primary digital elevation model (DEM). To cover areas above 60th parallel north, 
we combined HydroSHEDS with the 30″ × 30″ Global 30-Arc-Second Elevation 
(GTOPO30) (Gesch et al. 1999) and 1 km HYDRO1k (Verdin and Greenlee 1996) 
datasets.

We derived Height-above-Nearest-Drain (HAND) (see Nobre et al. 2011 for further 
details) using the minimum Strahler threshold (in our case 6), up to the highest 
Strahler order found globally. The sensitivity of this assumption is discussed in 
Winsemius et al. (2013).

We masked out subbasins that contribute to the minimum Strahler threshold 
and accumulate the flood volumes per subbasin. We then used the HAND map 
belonging to the minimum Strahler order (in our case 6) to spread out the flood 
volume over the high resolution DEM. Using HAND instead of ordinary topog-
raphy ensures that water is always spread out from the low-lying river cells to 
further upstream. This provided inundation for the rivers with the lowest Strahler 
order considered.

We repeated this procedure, but then taking out subbasins of one order higher, 
two orders higher, and so on, subsequently providing inundation for the higher-
order subbasins.

The code to perform this inundation downscaling can also be applied to more 
granular hydrological model outputs and is contributed to the open-source 
hydrological modeling package wflow (Schellekens 2014). It can be found 
on https://github.com/openstreams/wflow. The flood routine can be found 
under https://github.com/openstreams/wflow/blob/master/wflow-py/Scripts/
wflow_flood.py. 

Similarly, as performed in Ward et al. (2017), we performed benchmarking of the 
derived global fluvial inundation hazard maps, particularly the ones derived from 
the EUWATCH run, using riverine hazard maps from more localized data sources. 
Figure A2 shows a spatial comparison between the global inundation extent 
maps and local inundation extent maps over some case studies. Based on Fig-
ure A2 and following the procedure outlined in Ward et al. (2017), we calculated 
three verification scores commonly used in flood forecasting verification. The 
first is the hit rate, H, which estimates the fraction of our derived global flooded 
area to coincide with the local flood map. H ranges from 0 (poorest score) to 1, 
which indicates that the global map captures all flooded areas suggested by 
local maps. As H does not penalize false flooded areas in the global map, we 
also calculated the false alarm rate, F, which ranges from 0 (best score), which 
means that no grids are incorrectly classified as inundated, to 1, which indicates 
that all inundated pixels are false. Lastly, we also estimated the critical success 
index, C, which is a combined score for H and F (see Ward et al. 2017 for details). 
Table A1 lists the verification scores for the case studies. The scores are compa-
rable to those in the previous study by Ward et al. (2017).

A.1.3 Coastal hazard
The Global Tide and Surge Reanalysis dataset (GTSR) has been extensively 
validated, as described in (Muis et al. 2016, 2017). A recognized shortcoming 
of GTSR has been the poor representation of tropical cyclones. These storms 
are extremely intense and characterized by very sharp gradients in pressure 
and wind. These gradients are poorly represented in the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Re-analysis-Interim (ERA-Interim) 
dataset. We therefore decided to enrich GTSR using a historical storm track 
archive to represent tropical cyclones. These tropical cyclones are simulated 
using the International Best Track Archive for Climate Stewardship (IBTrACS) 
archive, which provides a global dataset of historical best tracks. We used all 
tracks over the period 1979–2014, converted these into wind and pressure fields, 
and simulated water levels accordingly. We combined the time series of GTSR 
and the cyclone track simulations by using the highest value found within the 
time series and established extreme values using a Gumbel extreme value distri-
bution fit on the annual extremes. 

To translate near-shore tide and surge levels to overland inundation, we applied 
a GIS-based inundation routine, similar to the approach in Vafeidis et al. (2018). 
The routine inundates areas that are hydraulically connected to the sea at a 
given extreme sea level. The model uses the Multi-Error-Removed Improved-Ter-
rain (MERIT) DEM (Yamazaki et al. 2017) at a 30″ × 30″ resolution as underlying 
topography.

We used gridded sea level changes from the Responses to Coastal Climate 
Change: Innovative Strategies for High-End Scenarios—Adaptation and Mitiga-
tion (RISES-AM) project (Jevrejeva et al. 2014) to simulate future extreme sea 
levels. These projections simulate a range of possible outcomes based on 
different sea level projection models. We chose the 50 percent projection for this 
project and have also established inundation estimates using the 5th and 95th 
percentiles. We included these projections by selecting for each extreme sea 
level the nearest pixel of the sea level rise grid and adding this additional water 
level to the extreme sea level. 

Table A1  | Inundation Verification Scores

AREA HIT RATE FALSE ALARM 
RATE

CRITICAL 
SUCCESS 

INDEX

Bangladesh 0.55 0.31 0.49

Saxony (Germany) 0.84 0.52 0.44

Chao Phraya  
(Thailand) 0.60 0.31 0.47

Severn (UK) 0.81 0.68 0.30

Thames (UK) 0.59 0.51 0.37

St. Louis (USA) 0.88 0.27 0.67
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Furthermore, we used subsidence estimates (see Section 3) to estimate how 
the terrain may change as a result of subsidence. We included subsidence, 
simulated at 5′ × 5′ by spatially interpolating these to the resolution of the 
MERIT terrain dataset and adding the subsidence estimates to the terrain, before 
processing the inundation.

MERIT is a reprocessed Shuttle Radar Topography Mission (SRTM) dataset that 
largely reduces noise factors as well as offsets due to vegetation. This is very 
important in coastal regions when simulating coastal flooding (Yamazaki et al. 
2017). We accommodated three important factors in the inundation routine that 
are not regularly taken into account in global-scale coastal inundation modeling, 
but which can acutely impact inundation estimates: 

We used a resistance factor to simulate the reduction of flooding as one moves 
inland. This resistance factor is important to consider as tides and storm surge 
events have a limited time span, and therefore their flood peak and associated 
volume can only penetrate inland to a certain degree. We applied this reduction 
factor over a Euclidean distance from the nearest coast line point. The resis-
tance factor was set to 0.5 m/km based on visual validation for flood events in 
Brittany (France) and Texas (United States). In several other studies attenuation 
factors varying between 0.1 and 1.0 m/km were used (for a review, see Vafeidis 
et al. 2018), but no (land use–based) guidelines yet exist for applying this factor. 

We multiplied the resistance factor by a weight proportional to the amount 
of water in each cell within the Euclidean pathway toward a land cell under 
consideration. In this way, grid cells that are marked as land within the terrain 
model, but in fact represent areas with large amounts of open water where tides 
and surge extremes can easily penetrate far inland, are correctly simulated as 

cells with low resistance. This happens, for instance, in the Brahmaputra Delta 
in Bangladesh, where the MERIT terrain data show terrain values over most of 
the estuary, but where these cells in reality represent very large open water 
connections to the ocean. We estimated fractions of open water using a 30-year 
monthly surface water mask dataset at 30 m resolution, derived from the Land-
sat archive (Pekel et al. 2016).

We applied a spatially varying offset between mean sea level according to the 
Finite Element Solution 2012 (FES 2012) model, and the datum used by the terrain 
model MERIT (Earth Gravitational Model 96 [EGM96]) to ensure that the zero 
datum of our terrain and our extreme sea levels from GTSR are the same.

A.1.4 Subsidence modeling 
The main steps involved in the production of the global subsidence map(s) are 
depicted in Figure A2.

Groundwater model

Production started with a two-layer groundwater model for the terrestrial part of 
the world, excluding Greenland and Antarctica (de Graaf et al. 2017). This model 
combined the Modular Finite-Difference Flow (MODFLOW) groundwater code 
(Harbaugh et al. 2000) with the hydrological model PCR-GLOBWB, where the 
latter is used to estimate groundwater recharge and groundwater use (abstrac-
tion), which drives the groundwater flow.  The model ran at a resolution of 5′ 
× 5′ (~10 km2 at the equator) for the period 1958–2016. The output consisted of 
monthly values for hydraulic head for the two model layers. The complete model 
cascade is described by Sutanudjaja et al. (2018).

Figure A2  | Main Steps Taken in the Modeling and Construction of the Global Subsidence Maps

Source: Authors.
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Subsidence model

Hydraulic head and top and bottom information of the two MODFLOW layers 
were used as inputs for the subsidence calculations. The calculations were 
carried out sequentially for each grid cell (1D vertical column) with the Deltares-
developed MODFLOW package for land subsidence and aquifer system compac-
tion (iMOD SUB-CR) code (Kooi et al. 2018). The SUB-CR subsidence package 
allows accounting for creep (often referred to as secondary compression that is 
independent of effective stress change). Subsidence is driven by head decline 
in the two main layers relative to the initial state in 1958. Elastic rebound or 
uplift is included upon head increase. Feedback of layer compression to flows 
and head is not included because MODFLOW model outputs are considered to 
already include such influences (without having been explicitly modeled). The 
two MODFLOW model layers were each subdiscretized into three layers in the 
compression calculations to improve the accuracy of calculated subsidence, 
while the head decline applied to each of the sublayers corresponds to that of 
the original MODFLOW layers.

Parameterization was based on an input file that specifies per original MOD-
FLOW layer (a) three compression parameters, (b) preconsolidation state, and 
(c) interbed fraction. The global lithological map (GLiM), with global information 
on the distribution of unconsolidated sediments (Hartmann and Moosdorf 2012), 
was used to determine whether virgin compression and creep are employed, or 
solely elastic compression (for “consolidated” areas that can represent fractured 
and/or carbonate rock aquifers). The interbed fraction specifies the fraction 
of compressible sediments (clays/silts) within the model layer. A few other 
parameters, such as the specific weight of (un)saturated sediment, were fixed in 
the current approach.

A.2 Exposure Data
A.2.1 Baseline exposure
The present-day maps for Aqueduct Floods are based on 2010. For urban area, 
we used the data for 2010 from the History Database of the Global Environment 
(HYDE) (Klein Goldewijk et al. 2010). An initial set of global maps of population 
and gross domestic product (GDP) were also required for 2010. Over the years, 
global datasets of population and GDP have become increasingly available. 
However, at the time of development none of them appeared to be suitable for 
this particular project. Existing maps of global population distribution either 
lack the spatial specification of the urban and rural division or do not meet the 
requirement that the population input data be consistent with the reported 
numbers in the shared socioeconomic pathway (SSP) database.

Therefore, several freely available data sources were combined to model the 
baseline population distribution and GDP. To achieve this, first, a base grid was 
developed at 30″ × 30″. Country boundaries are primarily derived from the 
Global Administrative Areas dataset (GADM 2012). Several country boundaries 
were manually modified to match the UN country definitions as used by the 
International Institute for Applied Systems Analysis (IIASA) in the SSP database; 
Kosovo is included under Serbia; and South and North Sudan are joined into one 
country. In total 251 countries (International Organization for Standardization 3 
[ISO3] areas) remained in this global information system (GIS) dataset. Of these, 
57 countries were excluded in the modeling process as they could not be joined 
to the ISO3 codes of the SSP database. They are small countries like Andorra and 
Liechtenstein, islands (mainly overseas territories such as the Falkland Islands), 
and vast areas like Greenland and Antarctica. The country base grid includes 
the percentage of each cell that is land or water; this was achieved using a data 
layer showing land percentage per grid cell provided by Deltares (https://aqua-
monitor.appspot.com/).

For baseline population, we started with the Oak Ridge National Laboratory 
(ORNL) LandScan 2010 population count map (Bright et al. 2011). As the total 
population per country in this map is different from the 2010 population stated in 
the SSP database, we used a correction factor per country to adjust the popula-
tion per cell.

We then developed a baseline map of urban areas, based on data from the 
Global Human Settlement Layer (GHSL), developed by the Joint Research Centre 
(JRC) (http://ghsl.jrc.ec.europa.eu/). GHSL provides a map of built-up area at 1 
km × 1 km resolution. We reclassified this map into a discrete map of urban and 
nonurban areas, using a threshold of 50 percent of built-up area to define urban 
land use. This threshold is based on visual comparison and correspondence 
with other high-resolution satellite data of built-up area. 

Next we developed a map of baseline urban population. This is required in 
subsequent steps, as it allows us to better represent spatial differences in popu-
lation between urban and nonurban areas. To do this, we overlaid the baseline 
map of urban areas with the baseline population map. Population within areas 
classed as urban is therefore defined as urban population in the following steps. 
Consequently, the absolute urban population numbers in the SSP database were 
not used directly.  

For baseline GDP per capita per country, we used the GDP purchasing power 
parity (PPP) numbers and the population numbers from the SSP database

A.2.2 Estimation of maximum economic damage

To achieve a globally consistent approach, Aqueduct Floods uses the meth-
odology of Huizinga et al. (2017) to estimate present-day maximum economic 
damage. Huizinga et al. (2017) found the following root function could be used to 
link GDP per capita to construction costs for each country:

Where:

y = construction cost (2010 euros)

x = GDP/capita (2010 dollars) 

a & b = constants (e.g., for residential buildings a = 24.08 and b = 0.385)

For this tool, we used the above equation to estimate construction costs per 
country in 2010, using the national level GDP per capita values from the SSP 
database. In order to transition from construction costs to maximum damage 
values, several further adjustments were necessary. We adjusted the construc-
tion cost values of the baseline and scenario following the suggested factors 
by Huizinga et al. (2017) for the different occupancy types. Such factors include 
depreciation, since the use of replacement values would overestimate the dam-
age. Therefore, the construction costs are depreciated by a factor 0.6, the default 
used by Huizinga et al. (2017). Furthermore, Huizinga et al. (2017) suggest that 
buildings, particularly ones made of more resistant materials, be constructed 
of parts that will never be damaged. As all stage-damage curves for Aqueduct 
Floods are developed up to a 100 percent vulnerability fraction (see Section 3), 
we adjusted the construction costs for 40 percent of undamageable parts. In 
addition to these structural damage costs, the amount of content and inventory 
needed to be added to get the total potential maximum damage value. Review-
ing the available literature for the different factors, Huizinga et al. (2017) suggest 
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that a global methodology take 50 percent, 100 percent, and 150 percent of the 
structural costs for residential, commercial, and industrial building content, 
respectively.

The above values refer to a country’s average maximum damages per m2 for 
individual objects, differentiated per occupancy type. The amount of residential, 
commercial, or industrial land use varies from country to country and within 
each country. As a proxy for the spatial distribution of different land classes 
between countries, we used Corine Land Cover data (EEA 2016) and compared 
for each European country the share of residential and commercial or industrial 
areas on the 100 m resolution dataset. For countries with these area types, the 
distribution between these two categories ranges between 75 percent and 
95 percent for residential areas (86 percent average), and between 5 percent 
and 25 percent for commercial or industrial areas (14 percent average). Similar 
results can be found in a report by Buildings Performance Institute Europe (BPIE 
2011) regarding floor space for various building types in Europe, where three-
quarters of the building stock is residential, with nonresidential accounting for 
the remaining 25 percent. Since more detailed information is not yet available, 
both sources can only act as a rough proxy to estimate residential, commercial, 
and industrial areas in Aqueduct Floods’ urban land use categories and are fur-
ther restricted to Europe. Taking into account that every distribution we choose 
can only be an approximation for the global scale, the shares of residential, 
commercial, and industrial areas within the urban cells were set to 75 percent 
residential, 15 percent commercial, and 10 percent industrial, respectively. As for 
most large-scale models, Aqueduct Floods’ impact model does not include infor-
mation on building footprints but applies a land use–based approach for which 
we further estimated the density of buildings between 20 percent (residential) 
and 30 percent (commercial and industrial), again following the suggestions of 
Huizinga et al. (2017).

For future maximum damage values, we scaled the present-day values accord-
ing to the change in GDP per capita per country between 2010 and each studied 
future time period.

A.2.3 Future exposure
To represent future urban area, we used the exposure maps developed by Jong-
man et al. (2015). To represent population and GDP, we developed a new method 
to represent the distribution between urban areas and nonurban regions. For 
this purpose, a different area map was required than the map of built-up area 
described previously. This was carried out using a new model; namely, 2UP (PBL 
2018). In this model, urban and rural populations were distributed according 
to a map of urban area. This model included specific allocation procedures to 
explicitly account for urban population density change. 2UP is partly based on 
the same principles followed in the Land Use Scanner (Loonen et al. 2009) and 
uses the Geo Data and Model Server (GeoDMS) modeling framework. The result-
ing maps have a spatial resolution of 30″ × 30″.  For Aqueduct Floods, the maps 
are developed for the present day (2010), and for future time periods (2030, 2050, 

2080), using the shared socioeconomic pathways. The SSPs have been devel-
oped by the research community to facilitate integrated assessments of climate 
impacts (van Vuuren et al. 2014). They provide possible pathways for society and 
related societal systems in the 21st century. In total there are five SSPs; these 
are documented in the SSP database of IIASA, in which scenarios for population, 
urbanization, and GDP on global, regional, and national scales can also be found. 
The database contains data for 194 countries in 10-year intervals from 2010 to 
2100. For this project, the population projections were used to extract total and 
urban population for the period 2010–80 in 10-year intervals, for SSP1, SSP2, and 
SSP3. Specifically, we used national population data based on the projection of 
IIASA’s Wittgenstein Centre for Demography and Global Human Capital (IIASA 
2013). In the same way, GDP PPP was extracted from the SSP database with 
the Organisation for Economic Co-operation and Development Env-Growth 
GDP projections. The projection data on urban share of the total population are 
developed by the National Center for Atmospheric Research (Jiang and O’Neill 
2017). The growth rate of urban share per time step determines the growth of the 
urban population.

For a small number of countries in the SSP database, the population and GDP 
projections were available but not the urban share projections. In order to still 
be able to simulate urban growth for these countries, additional data were used 
to fill in these missing urban shares. For these countries the proportion of the 
total population that is considered urban in 2010—that is, the urban share—was 
derived from the Global Rural-Urban Mapping Project urban extent grid (Balk et 
al. 2006; CIESIN et al. 2011) in combination with LandScan gridded population 
count (Bright et al. 2013). The urban share is determined by superimposing the 
urban extent map on the gridded population map and extracting the propor-
tion of urban population in each of these countries. For the future time steps 
(2020–80) the urban share for these countries was kept constant and assumed 
to be equal to the base year.

An overview of the overall approach can be found in Figure A3. Baseline maps of 
population, GDP, and urban areas were first developed. Then, for each country, 
2UP was used to make projections of how these change in the future. Essen-
tially, this involved three main steps. First, using data on growth in population, 
GDP, and urban density, the amount of additional urban area required per time 
step was estimated per country (country claims, see Appendix A.2.3.1). Second, 
the suitability of each grid cell for urban growth was calculated, based on physi-
cal and socioeconomic characteristics (suitability for urban growth, see Appen-
dix A.2.3.2). Third, an allocation module was used to combine the country claims 
data and the suitability maps, resulting in projected urban growth (allocation 
module, see Appendix A.2.3.3). Finally, urban population was assigned to the 
urban cells with the same suitability maps. The modeling steps were repeated 
for each 10-year time interval. The model processes are explained in more detail 
in the following subsection.

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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SUITABILITY FOR URBAN GROWTH

A .2 .3 .1  COUNTRY CL AIMS
The next step was to estimate the change in (urban) population and GDP per 
country. The SSP database does not contain data on future urban area growth 
or a similar indicator like urban population density. To derive the urban area per 
country per time step, the corresponding national urban population (from the 
SSP database) in a time step was divided by the mean urban population density 
(from the HYDE database) in the former time step. A slight correction in the form 
of an index was made by using the HYDE 3.2 dataset. This dataset contains esti-
mates of urban population density per country from 10,000 BC to 2100 AD (Klein 
Goldewijk et al. 2017, 2010) and is available for all SSPs. To develop the indices for 
each SSP scenario and country, the time series with absolute numbers of mean 
urban population density from HYDE were converted into an index series with 
base 2010 being equal to 1. In this manner, if mean urban population density was 
projected to decline, the urban area claim increases. In this way urban sprawl 
can be simulated by the model.  

Change in population per country was derived directly from the SSP database 
(IIASA 2013). To estimate future change in urban population per country between 
time periods, in order to enable a comparison between countries, we used 
the relative growth rates derived from the urban population shares in the SSP 
database. This means that only the SSP country totals were retained but not the 

imposed urban-rural population division. Aggregated absolute urban popula-
tion in the future gridded projections could therefore deviate from the absolute 
reported numbers based on the urban shares in the SSP database.

A .2 .3 .2  SUITABILIT Y FOR URBAN GROW TH
Spatial analyses to construct suitability maps 

The spatial allocation of population distribution to the grid level was based on 
local suitability for urban land use and population growth. Suitability here can 
be considered as a proxy for the attractiveness of a location to stimulate or repel 
urban growth, based on a set of physical and socioeconomic characteristics. 
The suitability can be determined by quantifying the relation between the 
covariates and urban land use. This was done using an inductive approach; the 
suitability was determined empirically with the aid of a spatial analysis using 
historical data of urban land use. 

The Atlas of Urban Expansion of the Lincoln Institute of Land Policy provides 
maps that represent urban land cover change between circa 1990 and circa 
2000 for a sample of 120 cities across the globe with more than 100,000 inhabit-
ants and distributed over nine world regions (Angel et al. 2012). The urban land 
use for each city was derived from Landsat images for the two time periods with 
a spatial resolution of 30 m × 30 m (Angel et al. 2005). 

Figure A3  | Conceptual Framework of 2UP Model: Input, Processing, and Outcomes

Source: Based on Figure 1 in PBL (2018).
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For the spatial analysis, the set of explanatory variables was superimposed on 
the urban land use for each of the 120 cities, and their values were extracted. 
Urban area for both time periods was taken into consideration, except for the 
analysis with distance to built-up area. Here, only the urban area that was built 
between the two time periods was used; urban area around 1990 was used 
as urban contour to determine the distance between newly built and existing 
urban area.

In the next step, histograms were plotted for each explanatory variable. In this 
way the relations between urban area and the variables were made visible. They 
all showed an inverse relation, which implies that with higher values of terrain 
roughness, travel time, distance to urban area and coast, the probability for new 
urban area decreases. The relations that were found were translated into prob-
ability frequency distributions, which were used in the 2UP model to transform 
the explanatory maps into suitability maps.

When simulating land use forward in time, there is inherently no other way than 
to assume constant relations between the geographical covariates and the 
future urban growth. Therefore, the distribution of future urban expansion and 
population is based on the relations that were found in the historical spatial 
analysis.

Although elevation and slope are both often referred to and used as explanatory 
variables for spatial patterns of urban growth, with grid cells covering approxi-
mately 1 km × 1 km, these variables might not be as indicative. Flat terrain at 
high elevations may be just as suitable for built-up urban area as flat terrain at 
low elevations. Additionally, the average slope of an area aggregated to 1 km × 1 
km is rather coarse for explaining suitability for urban growth. Terrain hetero-
geneity, which describes a combination of heights and multidirectional slopes 
within an area, could contain more information on the suitability for urban 
growth. Therefore, the Terrain Roughness Index (TRI), which quantifies terrain 
heterogeneity, was used as covariate in the suitability mapping. TRI is calculated 
according to the method described by Riley et al. (1999), using a high-resolution 
DEM. For this purpose, a composite of SRTM v3 (Jarvis et al. 2006) and GTOPO30 
(USGS 1996) elevation data was used. The SRTM v3 elevation map covers the 
globe between −60 and 60 degrees latitude, and is available with a spatial 
resolution of 1” × 1” (approximately 30 m × 30 m at the equator). The GTOPO30 
(30″ × 30″) map was used to complete the elevation map for +/− 60–90 degrees 
latitude. The resulting TRI map was processed at 30 m × 30 m resolution, and 
each grid cell contains a discrete index value for terrain roughness. To be imple-
mented into the model this map needed to be aggregated to 30″ × 30″. To avoid 
loss of detail as much as possible, for each TRI class (1–7) a map was compiled 
by counting the presence of that index value in the coarser grid cell. The seven 
maps in total were read into the model.

Travel time to the nearest city center is also considered an explanatory variable 
of urban growth and population distribution. A map with travel time (in minutes) 
to the nearest urban center was derived from a distance analysis based on road 
density and settlement data. The Global Roads Inventory Project (GRIP) dataset 
v1 (PBL 2009) was used, which contains a global road network. Populated places 
with more than 50,000 inhabitants were used as a settlement map.

Distance to urban area and distance to coast were also included in the 2UP 
model as covariates of urban growth. Both are based on the presence of sur-
rounding urban land use, the latter also in combination with the proximity of the 
coastline. Urban area is modeled in 2UP, and therefore these two variables are 
not static but dynamically simulated over time. For the historical analysis, both 
distance variables were calculated for the baseline urban land use map (2010).

Suitability maps 

In general, the earth’s land surface is not considered completely habitable for 
human settlement. For this reason a land mask is constructed from multiple 
spatial data layers to exclude unsuitable grid cells for habitation. This mask was 
processed by overlaying the following data layers: surface water and perma-
nent snow and ice cover. The Water Bodies Map dataset from the European 
Space Agency’s Land Cover Climate Change Initiative (Defourny 2016) was used 
to mask global surface water. Permanent snow and ice cover was extracted 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 4 
global land cover dataset (Friedl et al. 2002), and these areas were excluded as 
allocable land.

Suitability represents the relative attractiveness of each grid cell for urban land 
use and population. The urban driver maps and the tables with the historically 
derived probability values were loaded into the model. To transform them into 
suitability maps, the variable maps were given the corresponding probability 
values. 

The seven maps with TRI, one for each TRI class, containing the frequency of the 
index values per 30″ × 30″ grid cell, were combined into one suitability map. This 
was done by multiplying the probability and the frequency values for each TRI 
class and adding them together in one map. 

The variables distance to urban area and distance to coast were calculated us-
ing the modeling software. Distance to urban area is an indicator based on the 
presence of urban land use at a location and its surroundings. It was calculated 
by taking the sum of the total amount of urban area in the neighboring grid cells 
after applying a relative weight based on their distance to the central grid cell. 
The weight quickly decreases with increasing distance. The number of neigh-
boring cells that can contribute to this potential of each cell was restrained by 
applying a buffer of 10 km. Distance to coast was similarly calculated as distance 
to urban area and used as an indicator of urban potential. However, it was based 
on a combination of urban area and its distance to the coastline. The potential of 
urban area within 20 km of the coast was considered higher than that of urban 
areas outside this range. So the weight of potential of urban area decreases with 
distance to the coast. 

The relative contribution of the individual suitability maps determined the total 
suitability at each location, which was eventually used in the allocation process. 
Ideally, the weights are determined by calibration of the model. However, at the 
time of modeling the resulting urban land use maps and population distribution, 
the results of the calibration procedure were not yet available. A new version of 
the 2UP model will include the calibration coefficients to weigh suitability maps.

A .2 .3 .3  ALLOCATION MODULE
Allocating urban expansion 

The allocation of urban area within a country was based on the projected urban 
area claim, which was derived from the urban population claim, mean urban 
density in 2010, and the HYDE index. For each future time step, the projected 
amount of urban area (claim) was determined and the final suitability map 
was calculated. Thereafter, the urban area was allocated proportionally to the 
suitability map. This allocation procedure includes two steps: (1) the suitability 
within a country was sorted in a descending order, and (2) the urban area was 
allocated to the grid cells containing the highest suitability until the total claim 
was met. Both suitability and urban area were discrete across all cells of 30″ × 
30″, and as such, each cell was defined as either urban or rural. 
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Allocating population

The allocation of population was based on the projected population change and 
suitability. The latter was assumed to be equal for the allocation of urban area 
and population. The model was directed at downscaling urban population and 
builds on the simulated urban land use map from the previous step. The down-
scaling was done recursively, which means the urban population distribution in 
time step n was used for the simulation of the time step n + 1. Thereby, for each 
time step the projected change in urban population was allocated within the 
urban area, proportionally according to the relative distribution of suitability in 
the urban area. The grid cells with the highest suitability received a proportion-
ally larger share of the urban population change. Here also the allocation was 
weighted to the area of available land in a grid cell. 

The remaining rural population was downscaled to the grid level in a straight-
forward way. The projected national-level rural population was disaggregated 
proportionally to the population distribution of LandScan (Bright et al. 2011). The 
population count in the latter was first transformed into fractions of the total 
population, which then served as a distribution surface to allocate the rural 
population. Rural population was only allocated to nonurban areas. 

Allocating different scenarios

The spatial distribution of urban expansion and population growth that was 
simulated by the model was mainly driven by (1) national level population; (2) 
national level share in urban population, which represents urbanization; (3) 
national level urban density change; and (4) suitability mapping. The first three 
factors were SSP-specific, and their differences are exhibited in the model out-
comes. The fourth factor, suitability mapping, was grid-level specific and primar-
ily impacted the spatial patterns within a country. But it was static across the 
SSP scenarios. To implement variation based on the SSP storylines between the 
SSPs regarding suitability, two additional geospatial data layers were added to 
the suitability mapping: protected land and flood-prone area. For the protected 
land map the World Database on Protected Areas (WDPA) was used (IUCN and 
UNEP-WCMC 2009). The flood-prone area map represents river flood extent 
(1,000-year return period) and was collected from the Global Flood Risk with 
IMAGE Scenarios (GLOFRIS) framework (Ward et al. 2013; Winsemius et al. 2013). 
These two factors were selected as they can be used in a policy-related context; 
their influence on local suitability for urban growth can be linked to the SSP 
narratives. From these narratives an SSP-specific parameter value was deduced 
to modify local suitability and to account for local differentiation between sce-
narios. The final suitability was then determined by multiplying the parameter 
value with the local suitability value in cases of protected land, flood prone area, 
or both. Thus, for example, when a grid cell is located within protected land the 
suitability is set to zero for SSP1 and urban growth is excluded from this area. In 
Table A2, the parameter values are presented for each combination of SSP and 
suitability factor. 

Disaggregation of GDP projections

Most datasets on economic development are still available mainly at the 
national level. For spatial analysis the national figures are often disaggregated 
to the grid level according to population density across a country. Only recently 
have such data become available on a subnational scale, which makes it pos-
sible to achieve higher precision than on a country scale. Gennaioli et al. (2013) 
developed a subnational dataset (tabulated) that includes GDP per capita in 
constant 2005 international US$. The database consists of 1,569 subnational 
regions (i.e., provinces, states, etc., depending on the country) across 110 
countries. Although subnational GDP data are missing for most of the African 
continent, the data cover 74 percent of the world’s land surface and 96 percent 
of its GDP. The temporal coverage is also country-specific and ranges from 1960 
to 2010. Disaggregation of the national GDP projections to the grid level was 
based on the subnational data from this dataset whenever possible, in combina-
tion with national data from the SSP database. In this way the spatial variation in 
economic development within countries was taken into account, with the goal 
of developing an enhanced global gridded dataset of GDP.  

The table with GDP per capita data was spatially joined with the country base 
grid, based on GADM country boundaries. The latter also include first-level 
administrative subnational boundaries. The regional GDP data could therefore 
be linked to the base grid. The division of subnational regions in the original 
database did not perfectly match the regional division in the GADM base grid. 
Therefore, several manual adjustments were necessary to correct for deviations. 
In this process, lower-level subdivision of regions in the original data needed to 
be aggregated to one region in the base grid in some cases. Consequently, the 
number of subnational regions in the end result was lower, but the coverage 
remained the same. When available, the reported regional value for GDP per 
capita for 2010 was used, followed by the most recent year. In case of missing 
data, national GDP per capita (SSP database) was used. 

A.3 Validating FLOPROS
Flood Protection Standards (FLOPROS) is a database of current standards 
developed specifically for Aqueduct Floods (Scussolini et al. 2016). An extensive 
literature review was carried out, and supplemented with expert interviews, 
to derive a dataset of flood protection standards around the world. Since such 
information is not available for many regions, a modeling approach was also 
developed, as described in Scussolini et al. (2016). The original FLOPROS model 
values were calculated using the hazard and risk maps of GLOFRIS v1 as input. 
Since we now have new hazard and risk maps, the model was rerun with these 
to derive the state-level estimates that are used in the new version of Aqueduct 
Floods. Following the approach of Scussolini et al. (2016), we compared the 
modeled values with reported flood protection standards for several locations 
around the world (Figure A4). Such a comparison is difficult, since there is a 
disconnect between the state-level estimates of the FLOPROS model (which 
represent an average modeled protection standard per state) and the reported 
values, which are sometimes for an entire country, sometimes for a state, 
sometimes for a river basin, and sometimes for a city. However, they allow us 
to investigate whether the FLOPROS-modeled values are on the same order of 
magnitude as the reported values. SUITABILITY FACTOR SSP1 SSP2 SSP3

Protected land 0 0.5 1

Flood prone area 0 0.5 1

Table A2  |  SSP Specific Parameter Values for Suitability

Source: PBL Netherlands Environmental Assessment Agency.
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Values are shown for several locations for which reliable reported estimates of 
protection standards are available. These reported values are either shown as 
a range (minimum and maximum reported values) or a single value. FLOPROS 
model values are shown using the original data from Scussolini et al. (2016) and 
the FLOPROS model values using the data from the new version of Aqueduct 
Floods.

For most locations where the reported values provide a range, the FLOPROS 
model values are within or close to this range. An exception is Mozambique, 
where modeled protection standards are clearly lower than reported. Figure A5 
also compares the flood protection standards from the FLOPROS model using 
the original data of Scussolini et al. (2016) and using the new simulations based 
on the new GLOFRIS data. For most locations, the values are similar. 

The same method was applied to also estimate coastal flood protection stan-
dards at the state level, and a similar validation carried out (Figure A5). Overall, 
the model performs very well. The only location for which the reported values 
provide a range, and for which the FLOPROS model lies outside this range, is 

Durban, South Africa. However, note that reported values are for the city of 
Durban, while the FLOPROS model value is for the state in which it is located. 
Unsurprisingly, the value for the state is lower.

A.4 Underlying Cost Data
A.4.1 Estimating dike costs per country
First, we estimated unit investment costs of dikes in the United States at $7.0 
million km/m (kilometer length × meter heightening). This estimate is based on 
reported costs in New Orleans (Bos 2008). It pertains to all investment costs, 
including groundwork, construction, and engineering costs, property or land ac-
quisition, environmental compensation, and project management. We selected 
this value since it also is in the middle of other recent estimates for the United 
States and the Netherlands (Aerts et al. 2013; Jonkman et al. 2013). Moreover, 
it is close to the average cost of heightening reported in De Grave and Baarse 
(2011) of $6.6 million km/m heightening for 21 dike rings in the Netherlands; 
$6.7 million km/m heightening for 36 dike reaches in Canada (Lenk et al. 2017); 

Figure A4  | Validation of Modeled River Flood Protection Standards Using the FLOPROS Modeling Approach

Source: Authors, based on Scussolini et al. 2016.
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and $8.4 million km/m heightening for coastal dikes in the Netherlands (Lenk 
et al. 2017). Lenk et al. (2017) find that investment costs per meter heightening 
are well described by a linear function without intercept. They conclude that 
for large-scale studies it is sufficient to assume linear costs for each meter of 
heightening, including the initial costs. These cost estimates were then adjusted 
for all other countries by applying construction index multipliers (Compass 
International Consultants 2009) (based on civil engineering construction costs) 
to account for differences in construction costs across countries (Ward et al. 
2010). These costs are all then converted to US$ 2005 PPP using GDP deflators 
from the World Bank and annual average market exchange rates between euros 
and dollars taken from the European Central Bank.  Maintenance costs are 

represented as a percentage of investment costs per year, using either a default 
value of 1 percent per year or a user-defined value.

A.4.2 Estimating dike dimensions
For river flooding, we estimated the km length of dikes required by combining 
the river network map and the map of urban areas used in GLOFRIS (both 30″ x 
30″). We calculated the length of rivers of Strahler order 6 or higher (since these 
are the rivers for which inundation is simulated in GLOFRIS) flowing through 
urban areas. To calculate the (increase in) dike height needed for each future 
scenario to facilitate protection against floods for various magnitudes and 

Figure A5  | Validation of Modeled Coastal Flood Protection Standards Using the FLOPROS Modeling Approach 

Note: Values are shown for several locations for which reliable reported estimates of protection standards are available. These reported values are either shown as a range (minimum and maximum 
reported values) or a single value. FLOPROS model values using the data from the new version of Aqueduct Floods.
Source: Authors, based on Scussolini et al. 2016.
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associated return periods, for each river cell we estimated the required height 
of the dike for a given return period of protection by converting the discharge 
occurring with the return period into a flow depth. For a given scenario and 
protection level, and for a given grid cell, we established the heights of the dikes 
as follows. First, we retrieved the discharge occurring with the return period 
associated with the required protection level from a Gumbel distribution of 
discharges, established from GLOFRIS (Ward et al. 2013). Dikes are usually not 
built directly on the banks of the river but at a certain distance from the banks 
within the floodplain. We have here assumed that they are built at a distance of 
one times the channel width from the river banks. The width and bankfull depth 
of the channel are taken from the hydrological model PCR-GLOBWB (part of 
GLOFRIS framework), using

            (Eq. 1)

where Q is the discharge [L3 T-1], h is the flow depth [L], B is the flow width [L], 
n is the Manning roughness [T L-1/3], R is the hydraulic radius [L] (equal to hB/
(2h + B)), and i is the slope of the channel [-]. In large rivers, flow depth is much 
smaller than flow width, and R can be approximated by h, reducing Eq. 1 to

                (Eq. 2)

In our case, a part of the flow is through the main channel and over the part of 
the floodplain that lies between the dikes, both having different dimensions and 
roughness values. We therefore split Eq. 2 into a channel part and a floodplain 
part as follows:

         (Eq. 3)

where c and f are channel and floodplain, respectively, and hbf is the bankfull 
channel depth [L]. We solve this equation for h. The required height of the dike 
is then h-hbf.

For coastal flooding, we estimated the km length and required crest height of 
dikes based on the following procedure, which in essence is similar to targeted 
local dike safety assessments that evaluate fairly uniform stretches of dikes over 
coast-normal transects. The procedure involves three steps:

 ▪ The derivation of coastal segments and corresponding coast-normal 
transects.

 ▪ The construction of bed-level and vegetation cover based on global maps for 
each transect.

 ▪ The derivation of representative hydrodynamic conditions and wave 
attenuation under these conditions, resulting in total sea-water level 
(extreme tide and storm surge and significant wave height and peak wave 
period) at the foot of the coastal defense, based on which a required dike 
height is calculated.

The length and position of the coastline is derived from the OpenStreetMap 
(OSM 2015) coastline, which is approximately located at the mean sea level con-
tour. The coastline was moved 100 m inland to remove small features and derive 
a smoothed coastline at a likely position to efficiently establish a dike system. 
To find representative foreshore characteristics for the coastline, the world 
was divided in 1’ × 1’ (ca. 2 km × 2 km at the equator) grid cells.  For every cell 
containing a coastline segment, its coastline length and a transect perpendicu-
lar to the coast were derived at the center of the segment, resulting in 495,361 
transects that are on average 1.1 km apart. The analysis was limited to latitudes 
between 60° north and south for reasons of data availability and socioeconomic 
relevance. To test the sensitivity of the model to the transect spacing, transects 
based on a higher-resolution 30″x 30″ grid were derived for small coastal sec-
tions. Bootstrapping from these densely spaced transects revealed that transect 
distances up to 2 km give very similar results, indicating that a granularity of ~1.1 
km is high enough. 

Figure A6  | Schematic Overview of Characteristics Used to Define the Foreshore in Each Transect

Source: Authors. 
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For each transect, the foreshore width and slope and the vegetation width 
and type within the foreshore are derived along a coast-normal transect (see 
Figure A6).  Because the position of the coastline is not accurate everywhere, all 
transects stretch 4 km seaward and 4 km inland to fully capture the characteris-
tics of most foreshores. The main source of bed-level data is the newly created 
Earth observation–based high-resolution intertidal elevation map (Foreshore 
Assessment using Space Technology [FAST] intertidal elevation product; 20 m 
horizontal resolution, typically 30–50 cm vertical accuracy) (Calero et al. 2017), 
which fills the critical gap between bathymetry data (General Bathymetric Chart 
of the Oceans [GEBCO]; 30 arc seconds horizontally, tens of meters vertically) 
and topography data (MERIT; 3 arc seconds, 2 m vertically). The intertidal data 
have the highest horizontal and vertical resolution in the intertidal zone but 
lack accuracy in some environments where tidal range, image availability, or 
presence of tidal gauges are limited (e.g., the Mediterranean and Black Seas). 
Therefore, the intertidal data were classified as invalid in case (1) MERIT-GEBCO 
bed level is above the governing surge level and the intertidal bed level is below 
the MERIT-GEBCO bed level or (2) the range in bed levels from the intertidal data 
is smaller than a minimum threshold, indicating noise rather than a valid signal. 
The final bed level was constructed using intertidal data where sufficient valid 
data points were available complemented by the merged GEBCO-MERIT data in 
areas with small intertidal zones or invalid intertidal data. For this purpose, the 
GEBCO and MERIT data were merged to create a continuous bathymetry-eleva-
tion map by changing the vertical datum of MERIT from EGM96 to mean sea level 
(MSL) and assuming 0 m + MSL at the OSM coastline. 

The FAST coastal vegetation map, based on Landsat-8 and Sentinel-2 satel-
lite images, provides actual vegetation presence with 10 m resolution. Where 
vegetation is found at the foreshore, the vegetation type is determined by 
global salt marsh (Mcowen et al. 2017) and mangrove (Giri et al. 2011) maps, 
complemented with Corine Land Cover (CLC) (Europe only) and GlobCover v2.2 
maps where the former lack coverage. The salt marsh and mangrove maps are 
composed of various local datasets of varying quality and have good cover-
age in Europe and the United States but lack cover in some remote or less-
developed regions and countries that did not contribute data, such as northern 
Canada, northern Africa, southern Chile, Korea, Japan, and Russia. The properties 
of the vegetation relevant for wave attenuation (spatial density, height, diameter, 
and drag coefficient) have been determined in the FAST project based on field 
measurements and literature. Unsurprisingly, these differ considerably between 
salt marshes and mangroves, but there is no actual vegetation density, such as 
seasonal variation or difference between temperate and warm climate marshes; 
the used values are a conservative evaluation of winter properties in order not 
to overestimate wave attenuation.

The design water levels—tide and storm surge combined—were derived from 
the GTSR dataset (Muis et al. 2016), while the corresponding wave conditions 
have been derived from the ERA-Interim reanalysis (Dee et al. 2011). These are 
offshore significant wave heights and peak periods for a range of return periods 
(1–1,000 years), transformed to a nearshore wave height that is limited by depth-
induced breaking. Consequently, these wave heights for low return periods 
are typically higher than occur in reality, but the comparison of dike heights 
between with and without vegetation cover remains informative. A global near-
shore wave climate dataset is not available; correctly deriving such a dataset 
would require an enormous computational effort involving wave models like 
Simulating Waves Nearshore (SWAN) or Wave Modelling (WAM).

To determine the wave attenuation over a foreshore and the resulting significant 
wave height relevant for the flood defense on a transect, we used a lookup table 
with numerical modeling results for 31,824 combinations of foreshore slopes, 
vegetation covers, and hydrodynamic conditions. The values for these input 
conditions are based on the expected range of conditions; that is, the distribu-
tion functions of these parameters globally. This table contained wave heights 
modeled by XBeach (a nearshore wave model that accounts for the presence 
of vegetation; van Rooijen et al. 2016) at regular intervals along a steady slope, 
both with and without salt marsh or mangrove vegetation. Whereas a steady 
slope may appear overly simple for foreshore areas with small topographical 
features like ridges and gullies, the computed wave attenuation is typically 
comparable to the results of detailed simulations (van Zelst 2018). This method 
also has much lower computation cost and avoids a false sense of accuracy that 
high-resolution simulations based on global data may give. Every transect was 
evaluated coast-normal; that is, the incoming wave runs perpendicular to the 
coast. This simplification is made because the incoming wave direction is not 
known; the coast-normal situation is the most conservative because the width 
of the foreshore is shortest. 

The empirical EuroTop formulations (Pullen et al. 2007) give the required dike 
height with respect to the surge level for a standard 1:3 dike profile without 
berms and an allowed overtopping discharge of 1 l/m2/s, which is representative 
for simple, low-cost dikes but conservative for well-constructed and maintained 
dikes. The wave attenuation and wave run-up were looked up from the condi-
tion closest to the foreshore characteristics encountered in the transect under 
consideration to establish required dike crest height—and possible reduction of 
this height by vegetation.

In order to determine where dikes are required in terms of occurring flood haz-
ard, the most severe flooding scenario (i.e., 1,000-year return period RCP8.5) was 
overlaid with the transects. In total, for about 21 percent of all segments a flood 
may occur and thus a dike is taken into account in the cost-benefit analysis. 
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ENDNOTES
1. All values in the official International Institute for Applied Systems Analy-

sis (IIASA) databases are expressed in 2005 US$ PPP for consistency 
across studies.

2. The users may overwrite the FLOPROS flood protection level with any 
value between 2 and 1,000 (in return period).

3. One alteration was made to the FLOPROS data due to an underestima-
tion: riverine and coastal flood protection values for states within the 
Netherlands were set to 1,000.

4. The flood protection, in return years, is first converted into a probability 
before being added to the calculation (i.e., 1/flood protection).

5. Tool label: Implementation Range.

6. Tool label: Infrastructure Lifetime.

7. Tool label: Existing Protection Level (Return Period). See Section 6 to 
learn about default values.

8. Tool label: Design Protection Level (Return Period).

9. Tool label: Target Year for the Design Protection Level.

10. Interpolation is calculated using the Scipy module’s interp1d function in 
Python (SciPy community, 2019).

11. Tool label: Benefits Start Year.

12. Tool label: Unit Cost ($million/m/km).

13. Tool label: Operation & Maintenance Cost (%).

14. Tool label: Annual Discount Rate (%).
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